欢迎来到沈阳市铁西区宏泰宏钢材制品经销处
您所在的位置:首页 > 新闻中心  > 最新资讯
详解动力电池电阻焊接工艺
来源:www.sysdhjg.com 发布时间:2020年08月26日
沈阳焊接加工公司在动力电池的成组工艺中,电阻焊作为一种比较成熟的工艺,被在一些场合应用,比如单体与母排的焊接,电池极耳与并联导电条的连接等等。由于设备简单,成本较低,在电池行业发展早期,应用比较多。虽然近年有逐步被更先进的激光焊接和超声焊接替代的趋势……不管怎样,整理一份资料,了解一下这位成型工艺界的前辈。
电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。下面这段视频,里面的成组焊接就是电阻焊,感受一下。
电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。
电阻焊基本形式如下图所示,将即将接的材料 3 夹紧于两电极 2 之间,在施加一定的接压力后,接变压器 1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心 4。最后接变压器停止通电,被融化件材料遇冷凝固为点。利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊方法主要有四种,即点、缝、凸、对。

电阻焊点的热源是电流通过接区产生的电阻热。电阻焊点时,电流通过件产生的热量可由下式确定:
Q=I^2Rt
Q——产生的热量(J);
I——接电流(A);
R——两电极之间的电阻(Ω);
T——通电时间(s)。
上述公式表明决定电阻焊接的热量是焊接电流、两电极之间的电阻及通电时间三大因素。但其中热量的大部分是用来形成点焊的焊点,而少部分却分散流失于焊点周围的金属中。形成一定焊点所需的电流与通电时间有关,若通电时间很短,则点焊时所需的电流将增大。
两电极之间的电阻R随电阻焊方法的不同而不同,电阻点焊的电阻R是由两焊件的内部电阻Rw、两焊件之间的接触电阻Rc和电极与焊件之间的接触电阻Rcw组成。


电阻焊基本分类

电阻焊分为点焊、缝焊、凸焊和对焊。其中点焊是应用较广的方式。
点焊,是利用柱状电极加压通电,在搭接工件接触面成一个点的接方法。后面会有详细内容。
缝焊,焊件装配成搭接并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法,称为缝焊。缝焊主要用于焊接焊缝较为规则、要求密封的结构。

1-上焊件;2-下焊件;3-上电极;4-下电极;5-焊机电源

凸焊,在一个工件上有预制的凸点,凸焊时一次可在接头处形成一个或多个熔核。凸焊是点焊的一种变型形式。


对焊,是使焊件沿整个接触面焊合的电阻焊方法。除了电阻对焊,相关的还有闪光对焊。

电阻对焊:将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法。电阻对焊主要用于截面简单和强度要求不太高的焊件。

闪光对焊:将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。

电阻点焊过程四个阶段
点焊时,先加压使两个工件紧密接触,然后接通电流。电流流过所产生的电阻热使局部金属被熔化形成液态熔核。断电后,继续保持压力或加大压力,使熔核在压力下凝固结晶,形成组织致密的点。焊完一个点后,电极(或工件)将移至另一点进行焊接。当焊接下一个点时,有一部分电流会流经已焊好的点,称为分流现象。分流将使焊接处电流减小,影响焊接质量,因此两个相邻点之间应有一定距离。影响焊点质量的主要因素有接电流、通电时间、电极压力和工件表面清理情况等。点焊主要适用于薄板件,每次一个点或一次多个点。
通常,电阻点焊过程是由预压、接、维持和休止四个阶段所组成的,接时间、接电流以及电极电压是其基本参数。如下图所示为点过程中四个基本阶段的时序图。

自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。

与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。

由于电池在生产过程中,从涂膜开始到成为成品要经过很多道工序。即使经过严格的检测程序,使每组电源的电压、电阻、容量一致,但使用一段时间,也会产生这样或那样的差异。如同一位母亲生的双胞胎,刚生下时可能长得一模一样,做为母亲都很难分辨。然而,在两个孩子不断成长时,就会产生这样或那样的差异锂动力电池也是这样。使用一段时间产生差异后,采用整体电压控制的方式是难以适用于锂动力电池的,如一个36V的电池堆,必须用10只电池串联。整体的充电控制电压是42V,而放电控制电压是26V。用整体电压控制方式,初始使用阶段由于电池一致性特别好,也许不会出现什么问题。在使用一段时间以后电池内阻和电压产生波动,形成不一致的状态,这种时候仍然使用整体电压控制是不能达到其目的的。例如10只电池放电时其中两只电池的电压在2.8V,四只电池的电压是3.2V,四只是3.4V,现在的整体电压是32V,我们让它继续放电一直工作到26V。这样,那两只2.8V的电池就低于2.6V处于了过放状态。锂电池几次过放就等于报废。反之,用整体电压控制充电的方式进行充电,也会出现过充的状况。比如用上述10只电池当时的电压状态进行充电。整体电压达到42V时,那两只2.8V的电池处于"饥饿"的状态,而迅速吸收电量,就会超过4.2V,而过充的超过4.2V的电池,不仅由于电压过高产生报废,甚至还会发生危险,这就是锂动力电池的特性。

相关文章